The second dual of strongly zero-product preserving maps

author

  • A.R. Khoddami Faculty of Mathematical Sciences‎, ‎Shahrood University of Technology‎, ‎P.O‎. ‎Box 3619995161-316‎, ‎Shahrood‎, ‎Iran.
Abstract:

The notion of strongly Lie zero-product preserving maps on normed algebras as a generalization of Lie zero-product preserving maps are dened. We give a necessary and sufficient condition from which a linear map between normed algebras to be strongly Lie zero-product preserving. Also some hereditary properties of strongly Lie zero-product preserving maps are presented. Finally the second dual of a strongly zero-product, strongly Jordan zero-product and strongly Lie zero-product preserving map on a certain class of normed algebras are investigated.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

On strongly Jordan zero-product preserving maps

In this paper, we give a characterization of strongly Jordan zero-product preserving maps on normed algebras as a generalization of  Jordan zero-product preserving maps. In this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly Jordan zero-product preserving maps are completely different. Also, we prove that the direct p...

full text

on strongly jordan zero-product preserving maps

in this paper, we give a characterization of strongly jordan zero-product preserving maps on normed algebras as a generalization of  jordan zero-product preserving maps. in this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly jordan zero-product preserving maps are completely different. also, we prove that the direct p...

full text

Linear maps preserving or strongly preserving majorization on matrices

For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...

full text

Strongly Zero-product Preserving Maps on Normed Algebras Induced by a Bounded Linear Functional

We introduce the notions of strongly zero-product (strongly Jordan zero-product) preserving maps on normed algebras. These notions are generalization of the concepts of zero-product and Jordan zero-product preserving maps. Also for a non-zero vector space V and for a non-zero linear functional f on V, we equip V with a multiplication, converting V into an associative algebra, denoted by Vf . We...

full text

linear maps preserving or strongly preserving majorization on matrices

for $a,bin m_{nm},$ we say that $a$ is left matrix majorized (resp. left matrix submajorized) by $b$ and write $aprec_{ell}b$ (resp. $aprec_{ell s}b$), if $a=rb$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $r.$ moreover, we define the relation $sim_{ell s} $ on $m_{nm}$ as follows: $asim_{ell s} b$ if $aprec_{ell s} bprec_{ell s} a.$ this paper characterizes all linear p...

full text

Zero Product Preserving Maps of Operator Valued Functions

Let X,Y be locally compact Hausdorff spaces and M,N be Banach algebras. Let θ : C0(X,M) → C0(Y,N ) be a zero-product preserving bounded linear map with dense range. We show that θ is given by a continuous field of algebra homomorphisms from M into N if N is irreducible. As corollaries, such a surjective θ arises from an algebra homomorphism, provided thatM is a W*-algebra and N is a semi-simple...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 43  issue 6

pages  1781- 1790

publication date 2017-11-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023